Exercise Sheet 7 — 10 May 2016

Please submit your solution in the next class (17 May 2016)

1. **Equilibrium potential.** Assume a neuron has both excitatory and inhibitory synaptic inputs, described by the conductances g_{exc} and g_{inh}. Assume that the excitatory neurotransmitters open Na$^+$ channels with a reversal potential of $E_{\text{exc}} = 55$ mV, and the inhibitory neurotransmitters open K$^+$ channels with a reversal potential of $E_{\text{inh}} = -75$ mV. Plot the neuron’s equilibrium potential as a function of g_{exc}. (Hint: set $g_{\text{inh}} = 1\text{mS}$, then let g_{exc} run from 0 to infinity). What happens for very small g_{exc}, what happens for large g_{exc}?

2. **Integrate-and-fire neuron.** We consider the integrate-and-fire neuron with differential equation

$$\tau \frac{dV(t)}{dt} = E_L - V(t) + RI(t) \quad (1)$$

Whenever the voltage reaches a threshold, $V \geq V_{\text{th}}$, it is set back to the equilibrium potential, $V = E_L$.

(a) Consider a constant current $I(t) = I_0$. How large must I_0 be so that the neuron starts spiking?

(b) Let us now consider the case of a current step. In this case, we turn on a current at time $t = t_0$, and then turn it off after T time units. In other words, the current is given by

$$I(t) = \begin{cases}
0 & \text{for } t < t_0 \\
I_0 & \text{for } t_0 \leq t < t_0 + T \\
0 & \text{for } t \geq t_0 + T
\end{cases} \quad (2)$$

How large does I_0 now have to be, as a function of T, for the neuron to spike? Make a plot of I_0 versus T.

(c) **Advanced.** Imagine that two current steps of length T are injected with a time delay of Δt. What is the maximum delay Δt between the two steps until an action potential is emitted?

3. **Integrate-and-fire with refractory period.** Real neurons usually have refractory periods, i.e., for a few milliseconds after an action potential, the neuron will not fire again. How could you add such a refractory period to the integrate-and-fire neuron? Compute the new fI-curve, i.e., the firing rate versus input current curve of the neuron with refractory period. How does the new fI-curve differ from the old one?