Invariant selectivity of auditory neurons due to predictive coding

Izzet B. Yildiz 1, Brian Fischer 2, Sophie Denève 1
1 Group for Neural Theory, LNC, DEC, Ecole Normale Supérieure, Paris, France.
2 Seattle University, Department of Mathematics, Seattle, WA, USA.

Results

Learning predictive fields from natural stimuli
• Online Expectation-Maximization algorithm

Network effect on a single neuron
How does a model neuron’s STRF change with network activity?

Modeling of auditory neuronal data
We use decoding filters obtained from neuronal data 1 as an approximation to predictive fields and employ the model to predict neuronal responses

Introduction

What do auditory neurons represent?
• Spectro-temporal receptive field (STRF) is the interpretation of auditory neurons as linear filters. 2
• We propose that auditory neurons are selective rather than filters of their input and we hypothesize that they have a “true selectivity” independent of stimulus context. 3

A predictive coding model for auditory neurons
• We propose a dynamic Bayesian inference model and train it on a large database of natural speech to predict this invariant selectivity, i.e. predictive fields (PFs).
• The model can account for nonlinear contextual effects such as two-tone and forward suppression.
• The model neurons adapt rapidly to new input statistics (such as behaviorally relevant tones).
• The model can be used to explain neuronal and behavioral responses.

Background

Explaining Away: Dealing with overlapping stimuli

Model

• Feature detectors predict the sensory stimuli using the generative model.
• Input from the receptors (predictive fields, PF) are divided 4 by the prediction from other neurons (receptive fields, RF).
• The dynamics is given by a Hidden Markov Model.

A dynamic Bayesian inference model

Discussion

A normative approach to auditory coding
• We derive an optimal inference model where auditory neurons predict their input.
• Each neuron is selective to specific invariant features (PFs).
• We learn these features by training the model on speech data.
• PFs are strongly overlapping and highly structured as opposed to STRFs which are narrow band-pass filters.

Modeling of complex neuronal responses
• Decoding filters obtained from auditory data are qualitatively similar to predictive fields trained on speech data.
• This predicts that auditory responses are shaped as much by other neurons’ responses and selectivity as by the stimulus itself.
• This accounts for the strong inhibitory lobes in STRFs and high temporal precision of neural responses.

References

Acknowledgment
We thank Nina Micova for sharing his auditory data and Matthew Chalk for sharing his code and helpful discussions.

Modeling of auditory neuronal data
We use decoding filters obtained from neuronal data 1 as an approximation to predictive fields and employ the model to predict neuronal responses

Encoding filters (STRF)
Decoding filters (predictive fields)

Encoding: temporal precision of neural stimuli
After
\(f \) frequency
Predictive fields (PFs)
STRF is not a good predictor of model neuron

Decoding: encoding of natural stimuli
Before
\(f \) frequency
Average in time to get predictive fields

Model fit to neural data
• Fit of a model neuron (blue) to a single neuron data (black): \(c = 0.43 \).
• Much better fit (blue vs. red) when there are more neurons in the network.

Simulation of tone
Before
\(f \) frequency
After
40 sec of tone

Neuron x explains away the 2kHz + 1kHz combination and suppresses y.

Reconstruction of speech by model responses

• Predictive fields tuned to speech rapidly adapt to tone stimulation which causes specific changes in their STRFs.

Before
\(f \) frequency
After

36 - neuron case

Encoding filters (STRF)
Decoding filters (predictive fields)

Encoding: temporal precision of neural stimuli
After
\(f \) frequency
Predictive fields (PFs)
STRF is not a good predictor of model neuron

Decoding: encoding of natural stimuli
Before
\(f \) frequency
Average in time to get predictive fields

Model fit to neural data
• Fit of a model neuron (blue) to a single neuron data (black): \(c = 0.43 \).
• Much better fit (blue vs. red) when there are more neurons in the network.

Simulation of tone
Before
\(f \) frequency
After
40 sec of tone

Neuron x explains away the 2kHz + 1kHz combination and suppresses y.

Reconstruction of speech by model responses

• Predictive fields tuned to speech rapidly adapt to tone stimulation which causes specific changes in their STRFs.

Before
\(f \) frequency
After

36 - neuron case

Encoding filters (STRF)
Decoding filters (predictive fields)

Encoding: temporal precision of neural stimuli
After
\(f \) frequency
Predictive fields (PFs)
STRF is not a good predictor of model neuron

Decoding: encoding of natural stimuli
Before
\(f \) frequency
Average in time to get predictive fields

Model fit to neural data
• Fit of a model neuron (blue) to a single neuron data (black): \(c = 0.43 \).
• Much better fit (blue vs. red) when there are more neurons in the network.

Simulation of tone
Before
\(f \) frequency
After
40 sec of tone

Neuron x explains away the 2kHz + 1kHz combination and suppresses y.

Reconstruction of speech by model responses

• Predictive fields tuned to speech rapidly adapt to tone stimulation which causes specific changes in their STRFs.

Before
\(f \) frequency
After

36 - neuron case

Encoding filters (STRF)
Decoding filters (predictive fields)

Encoding: temporal precision of neural stimuli
After
\(f \) frequency
Predictive fields (PFs)
STRF is not a good predictor of model neuron

Decoding: encoding of natural stimuli
Before
\(f \) frequency
Average in time to get predictive fields

Model fit to neural data
• Fit of a model neuron (blue) to a single neuron data (black): \(c = 0.43 \).
• Much better fit (blue vs. red) when there are more neurons in the network.

Simulation of tone
Before
\(f \) frequency
After
40 sec of tone

Neuron x explains away the 2kHz + 1kHz combination and suppresses y.

Reconstruction of speech by model responses

• Predictive fields tuned to speech rapidly adapt to tone stimulation which causes specific changes in their STRFs.