Neural processing as causal inference
Timm Lochmann¹ and Sophie Deneve²,³

Perception is about making sense, that is, understanding what events in the outside world caused the sensory observations. Consistent with this intuition, many aspects of human behavior confronting noise and ambiguity are well explained by principles of causal inference. Extending these insights, recent studies have applied the same powerful set of tools to perceptual processing at the neural level. According to these approaches, microscopic neural structures solve elementary probabilistic tasks and can be combined to construct hierarchical predictive models of the sensory input. This framework suggests that variability in neural responses reflects the inherent uncertainty associated with sensory interpretations and that sensory neurons are active predictors rather than passive filters of their inputs. Causal inference can account parsimoniously and quantitatively for non-linear dynamical properties in single synapses, single neurons and sensory receptive fields.

Addresses
¹ College of Computer, Mathematical, and Natural Sciences, 1207 Bioscience Research Building, University of Maryland, College Park, MD 20742, United States
² Laboratoire de Neuroscence Cognitive, U960, INSERM, France
³ Département d’études Cognitives, Ecole Normale Supérieure, 29, rue d’Ulm, 75005 Paris, France

Corresponding author: Deneve, Sophie (sophie.deneve@ens.fr)

Introduction
Computers can beat the best chess players but cannot yet manipulate objects, walk or segment visual scenes like a 3-year-old child. What makes these apparently simple tasks so hard is the presence of multiple sources of uncertainty. The sensory feedback we receive from the environment is by nature incomplete, noisy and ambiguous. In addition, the consequences of our actions are often hard to predict. Recent years have seen the growing use of normative Bayesian models to describe behavior, perception and reasoning [1–5]. These models formalize sensory perception, motor control or behavioral strategies as inferring the probability of underlying causes for the sensory observations and rewards.

In contrast, the neural basis of probabilistic inference remains largely unknown. Neural systems processing noisy and ambiguous inputs have to solve the same elementary statistical problems as those faced, at a much higher level, by behaving subjects. This motivated recent works interpreting neural processing as probabilistic inference in underlying causal models.

Bayesian networks and neural networks
Most statistical problems can be formalized by a Bayesian network describing the causal relationship between ‘observed variables’ and ‘hidden variables’. For example, localizing an object given visual and auditory cues can be done by inferring the object location x that most probably caused the noisy visual and auditory sensory inputs. This can be represented by the Bayesian network shown in Figure 1a (dashed nodes and arrows), with causal arrows going from the hidden variable x to the observed variables s1 and s2. Humans are able to solve this cue combination task nearly optimally, taking into account the reliability of each modality to infer the most probable multimodal estimate [2,6]. Similarly, sensory neurons combine multiple noisy synaptic inputs (s1 and s2) in order to respond to the stimulus x that caused these inputs.

It was shown recently that such a cue combination could be performed by single neurons [7,8] or populations of neurons [9] through a linear combination of their inputs. The corresponding neural network is represented in the lower half of Figure 1a (plain connections and triangles). A neuron or neural population (triangular orange unit) sums feed-forwards inputs from s1 and s2 in order to infer the probability of stimulus, p(x|s1, s2). Note that the neural network resembles a mirror image of the Bayesian network it implements. Causal arrows go ‘down’ from the hidden cause x to the sensory observations s while connections in the neural network go ‘up’ from the sensory inputs to the neuron coding for x.

Sensory and motor variables are not static as they typically change over time: they not only cause the sensory input but also predict (cause) their own future states (circular dashed arrows in Figure 1b), corresponding to a ‘Hidden Markov model’ (HMM, upper half). For example, such models have been used to understand how humans optimally track the position of their arm in space [10]. The same problem is faced by a neuron or neural population responding to stimuli in a dynamic environment (orange triangle). Recent approaches used HMMs to understand how biochemical mechanisms of phototransduction [11], single synapses [12,13], single neurons [8,14] or recurrent neural networks [15–17,18,19] could optimally...
integrate their noisy inputs over time. Once again, the neural implementation is a mirror image of the underlying Bayesian network. Recurrent or self connections in the neural network (blue) predict the future state of x and thus integrate sensory evidence over time.

Finally, sensory observations are often ambiguous. For example, at a cocktail party, speech sounds could come from multiple speakers. This can be represented by two hidden variables, s^1 and s^2, causing the same sensory input s (dashed arrows and nodes in Figure 1c). Experimental evidence suggests that humans use probabilistic inference to infer common sources of visual and auditory inputs [20]. A similar problem is faced by sensory neurons representing overlapping stimuli (orange triangles). Inputs from the overlap could provide evidence for either stimulus, requiring a competition between the neurons detecting them [21,22]. This competition is called ‘explaining away’: a neuron that can explain the sensory input s should prevent another neuron from responding to this same input, since it is already accounted for (magenta connections). In effect, neurons remove their own prediction of s from the input to other neurons through lateral inhibition [22]. The way neuron p^1 responds to the sensory input s depends on the activity of neuron p^2. As a result, neuron p^2 reshapes the receptive field of neuron p^1 (Lochmann et al.: Perceptual Inference predicts contextual modulations of sensory responses, J Neurosci, 2011, 11, 2674-2681).
unpublished data). This was recently shown to account for many contextual and adaptive changes in sensory receptive fields \[22^{**},25,26\]. Note that because of explaining away, the neural implementation of a Bayesian network is not a ‘perfect’ mirror image of the causal model but contains additional connections and complexity.

Elementary Bayesian networks (upper halves of Figure 1a–d) can be used to formalize basic problems solved by neural micro-circuits (lower halves). In turn, these Bayesian networks and their neural mirror image can be combined to implement hierarchical causal models (‘belief networks’) of the external world (Figure 1d). The success of ‘Infomax’ and ‘sparse coding’ approaches suggests that hierarchical causal inference is essential to understand how the brain processes sensory information. These approaches used unsupervised learning on large sets of natural stimuli to learn a set of independent features generating natural sensory statistics, which is equivalent to maximizing information transfer, or learning a two layer Bayesian network \[27\]. While these Infomax approaches reproduced the receptive fields in retinal ganglion cells \[28\], V1 simple cells \[25,29\] and auditory nerve fibers \[30\], these theories based purely of information theory (as opposed to Bayesian models) may sometime obscure the true nature of sensory representations. Elementary features could be very different from sensory receptive fields. For example, inhibitory surrounds and ‘repulsive’ effects of adaptation (i.e. tilt illusion) often reflect effects of explaining away and not properties of the elementary features \[25\].

More importantly, the Bayesian framework can re-interpret top-down and bottom-up processing in the hierarchical brain as propagation of messages (i.e. belief propagation \[31\]) from sensory areas to abstract representations and back. Recent models proposed that ‘beliefs’ could be computed by the firing rates of neural populations \[32,33\], or transmitted as ‘particles’, that is, multiple samples from probability distributions \[34\]. Alternatively, recurrent networks of integrate and fire neurons could perform belief propagation with spikes coding for sudden increases in probability \[18^{**},35\].

However, special care must be taken to control the direction of message propagation in probabilistic inference and their neural counterpart (Figure 1e). A message sent from \(x^t\) to \(x^u\) should contain all the information received by \(x^u\), except the information sent from \(x^u\) to \(x^v\) (Figure 1e, left panel). Vice versa, a message sent from \(x^v\) to \(x^u\) should contain all information received by \(x^u\), except information sent from \(x^u\) to \(x^v\) (Figure 1e, right panel). Otherwise, inference (belief propagation) is loopy and generates false beliefs. This can be avoided in a neural structure by transferring only prediction errors, that is, the difference between the inputs and a prediction of these inputs by the next layer \[36\] or by local inhibitory loops cancelling reverberated spikes \[35\].

Several recent models postulated specific neural implementations of hierarchical inference in canonical cortical microcircuits \[32,36,37\]. These models hypothesized how different types of messages (i.e. top down versus bottom up, prediction errors) are encoded by different neuron subtypes and cortical layers. However, this remains highly speculative because of our incomplete knowledge of the anatomy and dynamics of cortical microcircuits.

Neural coding of probability

Other recent approaches focused on how neurons compute and represent uncertainty. In particular, plausible models should account for the large variability of cortical responses. To a first approximation, cortical spike trains can be described as Poisson processes whose only reproducible feature is their instantaneous firing rate \[38\]. Spikes look like random samples from this rate occurring at unpredictable times. How can such variability be reconciled with (or exploited for) probabilistic computations?

The framework of ‘Probabilistic population codes’ (PPC) proposes that this variability implicitly represents probabilities \[9\]. The log of the probability distribution of a variable encoded by a population of neurons can be computed as a weighted sum of their spike counts (Figure 2a). In particular, weights correspond to the log of the tuning curves when neurons are uncorrelated \[39\]. This implies that cue combinations (Figure 1a) can be performed by a weighted sum of spikes, and thus by simple convergence of multiple inputs onto an output layer. Note, however, that other forms of probabilistic inference such as marginalization or temporal prediction require non-linear computations and/or approximations. PPC predicts, in particular, that rates are gain modulated by certainty. This was proposed to account for ramp-like growth of neural responses in the parietal cortex during a motion discrimination task \[40^{**}\].

An alternative theory interprets noisy neural responses as samples from underlying probability distributions \[41^{**}\]. Rather than propagating beliefs, the neural activity pattern performs ‘Gibbs sampling’: it repeatedly draws the state of each unit from one possible interpretation of its input given the states of other units in the network. Since sensory inputs are inherently ambiguous, the network activity will constantly explore a large range of possible states, resulting in variable neural responses. For example, the same image \(s\) could be caused by many different linear mixtures of gabor (feature \(f_1\) and \(f_2\)) with different ‘contrasts’ \((s^1\text{ and } s^2)\), for example, \(s = x^1 f_1 + x^2 f_2 + \text{Noise} \) (Figure 2b). Rather than computing probability distribution of continuous variables, as in PPC, the neurons repeatedly sample from likely combinations of ‘discrete’ feature contrasts. For example, PPC and sampling codes differ drastically in their interpretations of orientation tuning curves in visual cortices. PPC
Neural code for probability. (a) Probabilistic population code (PPC). Response of a population of neurons (left panel) tuned to ‘orientation’ x. Neurons have bell-shaped tuning curves peaking at their ‘preferred’ orientation x_i, and their spike counts in response to one presentation of orientation $x = 90^\circ$ are plotted as a function of x_i. Because of neural variability (here, Poisson independent noise) the population response is a noisy hill of activity. Neurons with preferred orientation close to 90 are maximally activated. The log probability distribution of x can be computed by summing the spike counts s_i, weighted by ‘kernels’ $h_i(x)$. For independent Poisson noise, $h_i(x)$ is the log of the tuning curve of neuron i. (b) Sampling code. Left panel: a Bayesian network for a local image patch: given a set of gabor features f_i, many different linear combinations of gabors contrast x (hidden variables) could give rise to same sensory input s (equation in left schema). Right panel: result of sampling from likely combinations of contrast in neurons selective to f_1 and f_2. Neural activity sample from possible interpretations of s (i.e. generates multiple successive ‘guesses’, red dots in the right panel). Summing the network responses over time recovers the posterior probability $p(x_1, x_2|s)$ (grey hill in right panel). Because the sensory input is highly ambiguous, neural responses are correlated (till in grey hill) and highly variable (as seen on neural activity projected on each axis). This figure was adapted from [41**].

assumes that ‘orientation’ is a single ‘hidden’ sensory variable. Sampling codes assume that images are combinations of many discrete features (i.e. gabors) and orientation tuning curves are a by-product of inherent uncertainty on the correct combination.

The sampling model predicts that neural responses should become less variable when certainty increases (in contrast, PPC predicts higher response gains). Indeed, response variability decreases in many areas during sensory presentation or movement [21]. It also predicts that spontaneous neural responses should be sampled from the prior, that is, the distribution of responses experienced in the past. This was recently shown to be true during development of the ferret visual cortex, where spontaneous activity becomes gradually more similar to responses evoked by natural scenes [41**].

While postulating a neural code for probability, these theories do not specify how such a representation may arise from neural sensory processing. A recent set of studies [7,8**,18**] suggested that integrate and fire dynamics in recurrent neural networks allow them to naturally represent uncertainty with a spike-based code (Figure 3). This approach postulates that a neuron emits a spike whenever the log probability of the stimulus inferred from the sensory inputs differs significantly from the log probability encoded by output spikes (Figure 3a and b). The membrane potential of each neuron simply integrates the difference between its inputs and a prediction of this input by lateral connections and its own reset (Figure 3b). Using this ‘predictive coding’ mechanism, noisy sensory signals can be translated into a PPC, with sensory uncertainty reflected in neural variability [18**]. However, apparently unpredictable spike times and Poisson statistics (Figure 3c) stem from sensory uncertainty and do not reflect noisy neural processing [8*,18**].

Note that there are interesting similarities between the neural dynamics predicted by the sampling hypothesis (Figure 2b) and those caused by spike-based predictive
Representation of uncertainty by integrate-and-fire neurons. (a) A network of integrate-and-fire neurons integrates the feed-forward sensory inputs sensory inputs s and s' (red connections) in order to compute the log posterior probability L of dynamic variable x. This integrated input is compared with the network outputs through lateral inhibitory connections (green). Lateral connections compute G, an estimate of L, decoded from the output spike trains. Whenever there is a discrepancy between the feed-forward inputs and the prediction by lateral connections, that is, whenever prediction error $L-G$ reaches a fixed threshold, a new spike is fired in order to decrease this error. This ensures that the network output represents the log posterior probability with high accuracy. Because of this competition between feed-forward inputs and a prediction by lateral connections, each neuron in the layer receives balanced excitation and inhibition. (b) Spike-based tracking of log posterior probability L (green) by predictive coding. The network output G (top panel, green curve) is a sum of output spikes (top black curve), convolved with an exponential temporal window (hence the decay after each spike) and weighted by neural ‘kernel’ Γ (amplitude of each jump). Whenever this decreases the error $L-G$, a new spike is fired and a new kernel Γ is added to G. This is equivalent to an integrate-and-fire dynamic (bottom panel) with membrane potential $V = \Gamma^T(L-G)$ (blue curve). (c) Neural activity during sensory integration and working memory (one trial). In this example, the variable is continuous and static ($x_t = x$ is a constant). Before stimulus presentation at time 0, a patterned spontaneous activity represents the prior probability of x. During stimulus presentation (grey area) a hill of activity builds up at the position of the presented stimulus, reflecting accumulated sensory evidence. After stimulus presentation, a new stable hill of activity is maintained (working memory), representing the log posterior distribution. Spikes (blue dots, each line a different neuron) are emitted at irregular times and asynchronously, with quasi-Poisson independent statistics, even in the absence of any internal noise and sensory stimulation (prior and working memory period). During those periods, the network dynamics is chaotic. Despite this variability, precise spike times are important since randomly shuffling the spikes strongly degrades performance. Figure is adapted from [18**].

coding (Figure 3a). In both cases, a neuron responds by taking into account its input and the state of other neurons. Neural activity measured in successive time slices can be treated as conditionally independent samples, and the posterior probability can be decoded by summing these neural activities. If we replace ‘log probability’ of orientation x (L and G in Figure 3) by ‘probability of presence’ for gabor(s) at a different orientation, the spiking network generates a sampling-based code (as in Figure 2b) despite its deterministic dynamics.

Neural signatures of inference

Even without postulating whether and how neurons represent probabilities, Bayesian models can be applied to neural processing as examples of feature detection from noisy and ambiguous inputs. As in behavioral studies, simple causal models can capture highly non-linear and adaptive aspects of neural processing.

‘Classical’ models of neural processing are based on applying fixed spatiotemporal filters to the input [42]. In contrast, probabilistic inference treats inputs differently depending on the context in which they occur (Figure 4a). Because probabilities are normalized, sensory inputs are more informative and more strongly weighted when they occur in situations of uncertainty, for example right after the sudden appearance or disappearance of a stimulus.

For this reason, probabilistic inference can account for many non-linear and adaptive properties of sensory and neural integration. For example, Lengyel et al. [12**] proposed that synapses with short-term synaptic facilitation and depression optimally infer the membrane potential of a pre-synaptic neuron (Figure 4a). In another example, Fairhall et al. [43**] modeled the dynamics of contrast and light adaptation of retinal ganglion cells (RGCs). After a change in luminance or contrast, RGCs adapt their sensitivity more slowly when changes are smaller or after more time was spent at the previous level of luminance/contrast. This is quantitatively predicted by probabilistic inference (Figure 4b). Another causal
Neural signature of causal inference. A, Simulation with causal model presented in Figure 1b. A binary stimulus x_t (magenta) randomly switches on (from 0 to 1) and off (from 1 to 0), modulating the firing rate of a sensory neuron (black line). This generates a sequence of sensory input spikes s_t (vertical black lines) with Poisson statistics. Bottom panel: Posterior probability of the stimulus (blue line). Each input spike increases the probability, followed by a temporal decay, resembling synaptic integration of input spikes. However, ‘EPSPs’ do not all have the same size. When certainty is high (green and yellow highlights) the effective sensory weight is low. When certainty is low, the effective sensory weight is high (red highlight). (b) Results from Wark et al. [43**]. When responding to full-field stimuli with randomly varying luminance (top red curve) retinal ganglion cells adapt their response gain to the stimulus variance, or contrast. Middle panel: mean synaptic current to a RGC cell in response to a contrast shift. An exponential fit (red line) was performed to measure the speed of adaptation. Bottom panel: initial slope (speed of adaptation) as a function of the period between each switch in contrast and the mean luminance level. Dashed line: fit by a Bayesian model. (c) Temporal RF (spike triggered average STA) of a model neuron inferring the presence of a binary stimulus (Figures 1b and 4a). Simulations are performed with model from [8,22**]. Inputs used to map the STA were Poisson spike trains with rate sampled from a Gaussian distribution at each time step. The variance of this Gaussian determines the stimulus contrast. STA is longer at low contrast (blue line) than at high contrast (red line). (d) Spatial RF of model neurons inferring the presence of a bell-shaped visual pattern (dashed grey line) in the visual scene. This neuron competes with other neurons representing overlapping stimuli (overlapping dashed grey lines at different locations). Explaining away leads to surround suppression at high contrast (red line) with a small excitatory center. Competition is weaker at low contrast (blue line) resulting in larger center and no suppressive surrounds. The low contrast RF is more similar to stimulus represented by the model neuron (dashed grey ‘causal field’). Results adapted from [22**].

The inference model was used to account for the dynamics of sensory adaptation and synaptic short-term depression [13*].

Similar mechanisms account for changes in visual temporal receptive fields (tRFs) as a function of contrast (Figure 4c): Noisy inputs are integrated more slowly, leading to longer and more integrative tRFs, as observed in the retina [44], LGN [45] and visual cortices [46]. ‘explaining away’ (Figure 1c) has also been used to capture spatial aspects [22**] and temporal aspects [13*] of sensory adaptation. For example, competition between neurons representing overlapping stimuli (i.e., with overlapping ‘causal fields’) creates an ‘automatic’ coarse-to-fine change in sensory receptive fields (without any associated changes in model parameters) as a function of time and contrast (Figure 4d). Such contextual changes in RFs have been reported in the retina [44] and visual cortex [47,48].

Conclusion
Little experimental evidence has been collected about an explicit neural representation of probability, but recent theories and experimental results suggest that the responses of spiking neural networks can be interpreted as representing not only sensory and motor variables but also their posterior probability distributions.

Moreover, using causal models could challenge our ‘classical’ view of neural processing in terms of ‘feed-forward’ linear filtering of inputs. Examples presented above suggest that neural selectivity could be more accurately and parsimoniously described as a causal (predictive) model of the input rather than by fixed spatiotemporal RFs. Highly non-linear, complex and context dependent neural processes may in fact correspond to detection of much simpler features.

Finally, the inherently modular property of the Bayesian framework brings hope that we will eventually be able to link different levels of analysis, from single synapses to canonical microcircuits and hierarchies of brain areas, in a single coherent framework. In turn, this might allow us to link deficits or pharmacological effects on cortical microcircuits to their effects on behavior [49].

Acknowledgement
This work was supported by an EU grant BIND MECT-CT-20095-024831.
References and recommended reading

Papers of particular interest, published within the period of review, have been highlighted as:

- of special interest
- of outstanding interest

(LIP), while a monkey performed a motion integration task. Noisy inputs from the population of MT neurons are integrated by a population of LIP cells. This predicts the temporal dynamics of their firing rates and the behavioral data.

Cortical networks could build ‘optimal’ internal models of the environment by representing the statistical structure of the natural visual input. This predicts that ‘spontaneous’ activity samples from ‘probable’ neural responses to natural movies. Indeed, statistics of spontaneous activity in the visual cortex of developing ferrets become progressively more similar to responses to natural movies.

RGCs adapt to changes in stimulus variance (contrast) and luminance by decreasing their response gains. This adaptation is not instantaneous but requires an accumulation of evidence because of sensory noise. As predicted by Bayesian inference, adaptation is faster when the change in luminance/contrast is larger, or when the previous level of luminance/contrast lasted longer.

